Contents

	List of figures	page xii
	List of tables	xiv
	List of boxes	xvi
	List of screenshots	xvii
	Preface to the second edition	xix
	Acknowledgements	xxiv
1	Introduction	1
1.1	What is econometrics?	1
1.2	Is financial econometrics different from 'economic econometrics'	? 2
1.3	Types of data	3
1.4	Returns in financial modelling	7
1.5	Steps involved in formulating an econometric model	9
1.6	Points to consider when reading articles in empirical finance	10
1.7	Econometric packages for modelling financial data	11
1.8	Outline of the remainder of this book	22
1.9	Further reading	25
	Appendix: Econometric software package suppliers	26
2	A brief overview of the classical linear regression model	27
2.1	What is a regression model?	27
2.2	Regression versus correlation	28
2.3	Simple regression	28
2.4	Some further terminology	37
2.5	Simple linear regression in EViews – estimation of an optimal	
	hedge ratio	40
2.6	The assumptions underlying the classical linear regression model	43
2.7	Properties of the OLS estimator	44
2.8	Precision and standard errors	46

2.9 An introduction to statistical inference

51

2.10	A special type of hypothesis test: the <i>t</i> -ratio	65
2.11	An example of the use of a simple <i>t</i> -test to test a theory in finance:	
	can US mutual funds beat the market?	67
2.12	Can UK unit trust managers beat the market?	69
2.13	The overreaction hypothesis and the UK stock market	71
2.14	The exact significance level	74
2.15	Hypothesis testing in EViews – example 1: hedging revisited	75
2.16	Estimation and hypothesis testing in EViews – example 2:	
	the CAPM	77
	Appendix: Mathematical derivations of CLRM results	81
3	Further development and analysis of the classical linear	
	regression model	88
	Generalising the simple model to multiple linear regression	88
3.2	The constant term	89
3.3		
	in the generalised case?	91
	Testing multiple hypotheses: the <i>F</i> -test	93
3.5	I I I I I I I I I I I I I I I I I I I	99
3.6		99
3.7	8	105
	Goodness of fit statistics	106
	Hedonic pricing models	112
3.10		115
	Appendix 3.1: Mathematical derivations of CLRM results	117
	Appendix 3.2: A brief introduction to factor models and principal	
	components analysis	120
4	Classical linear regression model assumptions and	
	diagnostic tests	129
	Introduction	129
	Statistical distributions for diagnostic tests	130
	Assumption 1: $E(u_t) = 0$	131
4.4	Assumption 2: $var(u_t) = \sigma^2 < \infty$	132
4.5	Assumption 3: $cov(u_i, u_j) = 0$ for $i \neq j$	139
4.6	Assumption 4: the x_t are non-stochastic	160
4.7	Assumption 5: the disturbances are normally distributed	161
4.8	Multicollinearity	170
4.9	Adopting the wrong functional form	174
4.10	Omission of an important variable	178
4.11	Inclusion of an irrelevant variable	179

1 1 0		100
	Parameter stability tests	180
4.13	A strategy for constructing econometric models and a discussion	101
4 4 4	of model-building philosophies	191
4.14	Determinants of sovereign credit ratings	194
5	Univariate time series modelling and forecasting	206
5.1	Introduction	206
5.2	Some notation and concepts	207
	Moving average processes	211
	Autoregressive processes	215
5.5	The partial autocorrelation function	222
5.6	ARMA processes	223
5.7	Building ARMA models: the Box–Jenkins approach	230
5.8	Constructing ARMA models in EViews	234
5.9	Examples of time series modelling in finance	239
5.10	Exponential smoothing	241
5.11	Forecasting in econometrics	243
5.12	Forecasting using ARMA models in EViews	256
5.13	Estimating exponential smoothing models using EViews	258
6	Multivariate models	265
6.1	Motivations	265
6.2	Simultaneous equations bias	268
6.3	So how can simultaneous equations models be validly estimated?	269
6.4	Can the original coefficients be retrieved from the πs ?	269
6.5	Simultaneous equations in finance	272
6.6	A definition of exogeneity	273
6.7	Triangular systems	275
6.8	Estimation procedures for simultaneous equations systems	276
6.9	An application of a simultaneous equations approach to	
	modelling bid-ask spreads and trading activity	279
6.10	Simultaneous equations modelling using EViews	285
6.11	Vector autoregressive models	290
6.12	Does the VAR include contemporaneous terms?	295
6.13	Die die siemif aan aan die aander beste	297
6.14	Block significance and causality tests	4)1
	VARs with exogenous variables	298
6.15	VARs with exogenous variables Impulse responses and variance decompositions	
	VARs with exogenous variables	298
6.16	VARs with exogenous variables Impulse responses and variance decompositions	298

7	Modelling long-run relationships in finance	318
7.1	Stationarity and unit root testing	318
7.2	Testing for unit roots in EViews	331
7.3	Cointegration	335
7.4	Equilibrium correction or error correction models	337
7.5	Testing for cointegration in regression: a residuals-based approach	339
7.6	Methods of parameter estimation in cointegrated systems	341
7.7	Lead–lag and long-term relationships between spot and	
	futures markets	343
7.8	Testing for and estimating cointegrating systems using the	
	Johansen technique based on VARs	350
7.9	Purchasing power parity	355
7.10	Cointegration between international bond markets	357
7.11	Testing the expectations hypothesis of the term structure of	
	interest rates	362
7.12	Testing for cointegration and modelling cointegrated systems	
	using EViews	365
8	Modelling volatility and correlation	379
8.1	Motivations: an excursion into non-linearity land	379
8.2	Models for volatility	383
8.3	Historical volatility	383
8.4	Implied volatility models	384
8.5	Exponentially weighted moving average models	384
8.6	Autoregressive volatility models	385
8.7	Autoregressive conditionally heteroscedastic (ARCH) models	386
8.8	Generalised ARCH (GARCH) models	392
8.9	Estimation of ARCH/GARCH models	394
8.10	Extensions to the basic GARCH model	404
8.11	Asymmetric GARCH models	404
8.12	The GJR model	405
8.13	The EGARCH model	406
8.14	GJR and EGARCH in EViews	406
8.15	Tests for asymmetries in volatility	408
8.16	GARCH-in-mean	409
8.17	Uses of GARCH-type models including volatility forecasting	411
8.18	Testing non-linear restrictions or testing hypotheses about	
	non-linear models	417
8.19	Volatility forecasting: some examples and results from the	
	literature	420
8.20	Stochastic volatility models revisited	427

8.21	Forecasting covariances and correlations	428
8.22	Covariance modelling and forecasting in finance: some examples	429
8.23	Historical covariance and correlation	431
8.24	Implied covariance models	431
8.25	Exponentially weighted moving average model for covariances	432
8.26	Multivariate GARCH models	432
8.27	A multivariate GARCH model for the CAPM with time-varying	
	covariances	436
8.28	Estimating a time-varying hedge ratio for FTSE stock index returns	437
8.29	Estimating multivariate GARCH models using EViews	441
	Appendix: Parameter estimation using maximum likelihood	444
9	Switching models	451
9.1	Motivations	451
9.2	Seasonalities in financial markets: introduction and	
	literature review	454
9.3	Modelling seasonality in financial data	455
9.4	Estimating simple piecewise linear functions	462
9.5	Markov switching models	464
9.6	A Markov switching model for the real exchange rate	466
9.7	A Markov switching model for the gilt–equity yield ratio	469
9.8	Threshold autoregressive models	473
9.9	Estimation of threshold autoregressive models	474
9.10	Specification tests in the context of Markov switching and	
	threshold autoregressive models: a cautionary note	476
9.11	A SETAR model for the French franc-German mark exchange rate	477
9.12	Threshold models and the dynamics of the FTSE 100 index and	
	index futures markets	480
9.13	A note on regime switching models and forecasting accuracy	484
	Panel data	487
10.1	Introduction – what are panel techniques and why are they used?	487
10.2	What panel techniques are available?	489
10.3	The fixed effects model	490
10.4		493
10.5		494
10.6	The random effects model	498
10.7		
	Eastern Europe	499
10.8	Panel data with EViews	502
10.9	Further reading	509

11	Limited dependent variable models	511
11.1	Introduction and motivation	511
11.2	The linear probability model	512
11.3	The logit model	514
11.4	Using a logit to test the pecking order hypothesis	515
11.5	The probit model	517
11.6	Choosing between the logit and probit models	518
11.7	Estimation of limited dependent variable models	518
11.8	Goodness of fit measures for linear dependent variable models	519
11.9	Multinomial linear dependent variables	521
11.10	The pecking order hypothesis revisited – the choice between	
	financing methods	525
11.11	Ordered response linear dependent variables models	527
11.12	Are unsolicited credit ratings biased downwards? An ordered	
	probit analysis	528
11.13	Censored and truncated dependent variables	533
11.14	Limited dependent variable models in EViews	537
	Appendix: The maximum likelihood estimator for logit and	
	probit models	544
12	Simulation methods	546
12.1	Motivations	546
12.2	Monte Carlo simulations	547
12.3	Variance reduction techniques	549
12.4	Bootstrapping	553
12.5	Random number generation	557
12.6	Disadvantages of the simulation approach to econometric or	
	financial problem solving	558
12.7	An example of Monte Carlo simulation in econometrics: deriving a	
	set of critical values for a Dickey-Fuller test	559
12.8		565
12.9	An example of bootstrapping to calculate capital risk requirements	571
13	Conducting empirical research or doing a project or dissertation	_
	in finance	585
13.1	What is an empirical research project and what is it for?	585
13.2		586
	Sponsored or independent research?	590
13.4	The research proposal	590
13.5	Working papers and literature on the internet	591
13.6	Getting the data	591

13.7	Choice of computer software	593
13.8	How might the finished project look?	593
13.9	Presentational issues	597
14	Recent and future developments in the modelling of financial time series	598
	Summary of the book	598
	What was not covered in the book	598
14.3	Financial econometrics: the future?	602
14.4	The final word	606
Appendix 1	A review of some fundamental mathematical and	
	statistical concepts	607
A1	Introduction	607
A2	Characteristics of probability distributions	607
A3	Properties of logarithms	608
A4	Differential calculus	609
A5	Matrices	611
A6	The eigenvalues of a matrix	614
Appendix 2	Tables of statistical distributions	616
Appendix 3	Sources of data used in this book	628
	References	629
	Index	641

Figures

1.1	Steps involved in forming an	
	econometric model	page 9
2.1	Scatter plot of two variables, y and x	29
2.2	Scatter plot of two variables with a line	
	of best fit chosen by eye	31
2.3	Method of OLS fitting a line to the data	
	by minimising the sum of squared	
	residuals	32
2.4	Plot of a single observation, together	
	with the line of best fit, the residual	
	and the fitted value	32
2.5	Scatter plot of excess returns on fund	
	XXX versus excess returns on the	
	market portfolio	35
2.6	No observations close to the <i>y</i> -axis	36
2.7	Effect on the standard errors of the	
	coefficient estimates when $(x_t - \bar{x})$ are	
	narrowly dispersed	48
2.8	Effect on the standard errors of the	
	coefficient estimates when $(x_t - \bar{x})$ are	
	widely dispersed	49
2.9	Effect on the standard errors of x_t^2 large	49
2.10	Effect on the standard errors of x_t^2 small	1 50
2.11	The normal distribution	54
2.12	The <i>t</i> -distribution versus the normal	55
2.13	Rejection regions for a two-sided 5%	
	hypothesis test	57
2.14	Rejection regions for a one-sided	
	hypothesis test of the form $H_0: \beta = \beta^*$,	
	$H_1: \beta < \beta^*$	57
2.15	Rejection regions for a one-sided	
	hypothesis test of the form $H_0: \beta = \beta^*$,	
	$H_1: \beta > \beta^*$	57
2.16	Critical values and rejection regions for	
	a <i>t</i> _{20;5%}	61

2.17	Frequency distribution of <i>t</i> -ratios of	
	mutual fund alphas (gross of	
	transactions costs) Source: Jensen	
	(1968). Reprinted with the permission	
	of Blackwell Publishers	68
2.18	Frequency distribution of t-ratios of	
	mutual fund alphas (net of	
	transactions costs) Source: Jensen	
	(1968). Reprinted with the permission	
	of Blackwell Publishers	68
2.19	Performance of UK unit trusts,	
	1979–2000	70
3.1	$R^2 = 0$ demonstrated by a flat	
	estimated line, i.e. a zero slope	
	coefficient	109
3.2	$R^2 = 1$ when all data points lie exactly	
	on the estimated line	109
4.1	Effect of no intercept on a regression	
	line	131
4.2	Graphical illustration of	
	heteroscedasticity	132
4.3	Plot of \hat{u}_t against \hat{u}_{t-1} , showing positive	
	autocorrelation	141
4.4	Plot of \hat{u}_t over time, showing positive	
	autocorrelation	142
4.5	Plot of \hat{u}_t against \hat{u}_{t-1} , showing	
	negative autocorrelation	142
4.6	Plot of \hat{u}_t over time, showing negative	
	autocorrelation	143
4.7	Plot of \hat{u}_t against \hat{u}_{t-1} , showing no	
	autocorrelation	143
4.8	Plot of \hat{u}_t over time, showing no	
	autocorrelation	144
4.9	Rejection and non-rejection regions for	
	DW test	147

4.10 4.11	A normal versus a skewed distribution A leptokurtic versus a normal	162
4.12	distribution Regression residuals from stock return	162
4.12	data, showing large outlier for October	
	1987	165
4.13	Possible effect of an outlier on OLS estimation	166
4.14	Plot of a variable showing suggestion	100
	for break date	185
5.1	Autocorrelation function for sample MA(2) process	215
5.2	Sample autocorrelation and partial	210
	autocorrelation functions for an MA(1)	
F 0	model: $y_t = -0.5u_{t-1} + u_t$	226
5.3	Sample autocorrelation and partial autocorrelation functions for an MA(2)	
	model: $y_t = 0.5u_{t-1} - 0.25u_{t-2} + u_t$	226
5.4	Sample autocorrelation and partial	
	autocorrelation functions for a slowly	
	decaying AR(1) model: $y_t = 0.9y_{t-1} + u_t$	227
5.5	Sample autocorrelation and partial	
	autocorrelation functions for a more	
	rapidly decaying AR(1) model:	227
5.6	$y_t = 0.5y_{t-1} + u_t$ Sample autocorrelation and partial	227
5.0	autocorrelation functions for a more	
	rapidly decaying AR(1) model with	
	negative coefficient: $y_t = -0.5y_{t-1} + u_t$	228
	Sample autocorrelation and partial	
5.7	Sample autocorrelation and partial	
5./	autocorrelation functions for a	
5./	autocorrelation functions for a non-stationary model (i.e. a unit	
	autocorrelation functions for a non-stationary model (i.e. a unit coefficient): $y_t = y_{t-1} + u_t$	228
5.7	autocorrelation functions for a non-stationary model (i.e. a unit coefficient): $y_t = y_{t-1} + u_t$ Sample autocorrelation and partial	228
	autocorrelation functions for a non-stationary model (i.e. a unit coefficient): $y_t = y_{t-1} + u_t$ Sample autocorrelation and partial autocorrelation functions for an	228
	autocorrelation functions for a non-stationary model (i.e. a unit coefficient): $y_t = y_{t-1} + u_t$ Sample autocorrelation and partial autocorrelation functions for an ARMA(1, 1) model:	
	autocorrelation functions for a non-stationary model (i.e. a unit coefficient): $y_t = y_{t-1} + u_t$ Sample autocorrelation and partial autocorrelation functions for an ARMA(1, 1) model: $y_t = 0.5y_{t-1} + 0.5u_{t-1} + u_t$	228 229
5.8	autocorrelation functions for a non-stationary model (i.e. a unit coefficient): $y_t = y_{t-1} + u_t$ Sample autocorrelation and partial autocorrelation functions for an ARMA(1, 1) model:	
5.8	autocorrelation functions for a non-stationary model (i.e. a unit coefficient): $y_t = y_{t-1} + u_t$ Sample autocorrelation and partial autocorrelation functions for an ARMA(1, 1) model: $y_t = 0.5y_{t-1} + 0.5u_{t-1} + u_t$ Use of an in-sample and an	229
5.8	autocorrelation functions for a non-stationary model (i.e. a unit coefficient): $y_t = y_{t-1} + u_t$ Sample autocorrelation and partial autocorrelation functions for an ARMA(1, 1) model: $y_t = 0.5y_{t-1} + 0.5u_{t-1} + u_t$ Use of an in-sample and an out-of-sample period for analysis Impulse responses and standard error bands for innovations in unexpected	229
5.8 5.9 6.1	autocorrelation functions for a non-stationary model (i.e. a unit coefficient): $y_t = y_{t-1} + u_t$ Sample autocorrelation and partial autocorrelation functions for an ARMA(1, 1) model: $y_t = 0.5y_{t-1} + 0.5u_{t-1} + u_t$ Use of an in-sample and an out-of-sample period for analysis Impulse responses and standard error bands for innovations in unexpected inflation equation errors	229
5.8	autocorrelation functions for a non-stationary model (i.e. a unit coefficient): $y_t = y_{t-1} + u_t$ Sample autocorrelation and partial autocorrelation functions for an ARMA(1, 1) model: $y_t = 0.5y_{t-1} + 0.5u_{t-1} + u_t$ Use of an in-sample and an out-of-sample period for analysis Impulse responses and standard error bands for innovations in unexpected inflation equation errors Impulse responses and standard error	229 245
5.8 5.9 6.1	autocorrelation functions for a non-stationary model (i.e. a unit coefficient): $y_t = y_{t-1} + u_t$ Sample autocorrelation and partial autocorrelation functions for an ARMA(1, 1) model: $y_t = 0.5y_{t-1} + 0.5u_{t-1} + u_t$ Use of an in-sample and an out-of-sample period for analysis Impulse responses and standard error bands for innovations in unexpected inflation equation errors Impulse responses and standard error bands for innovations in the dividend	229 245 307
5.8 5.9 6.1	autocorrelation functions for a non-stationary model (i.e. a unit coefficient): $y_t = y_{t-1} + u_t$ Sample autocorrelation and partial autocorrelation functions for an ARMA(1, 1) model: $y_t = 0.5y_{t-1} + 0.5u_{t-1} + u_t$ Use of an in-sample and an out-of-sample period for analysis Impulse responses and standard error bands for innovations in unexpected inflation equation errors Impulse responses and standard error bands for innovations in the dividend yields	229 245
5.85.96.16.2	autocorrelation functions for a non-stationary model (i.e. a unit coefficient): $y_t = y_{t-1} + u_t$ Sample autocorrelation and partial autocorrelation functions for an ARMA(1, 1) model: $y_t = 0.5y_{t-1} + 0.5u_{t-1} + u_t$ Use of an in-sample and an out-of-sample period for analysis Impulse responses and standard error bands for innovations in unexpected inflation equation errors Impulse responses and standard error bands for innovations in the dividend yields Value of \mathbb{R}^2 for 1,000 sets of regressions	229 245 307
5.85.96.16.2	autocorrelation functions for a non-stationary model (i.e. a unit coefficient): $y_t = y_{t-1} + u_t$ Sample autocorrelation and partial autocorrelation functions for an ARMA(1, 1) model: $y_t = 0.5y_{t-1} + 0.5u_{t-1} + u_t$ Use of an in-sample and an out-of-sample period for analysis Impulse responses and standard error bands for innovations in unexpected inflation equation errors Impulse responses and standard error bands for innovations in the dividend yields	229 245 307

7.2	Value of <i>t</i> -ratio of slope coefficient for	
	1,000 sets of regressions of a	
	non-stationary variable on another	
	independent non-stationary variable	320
7.3	Example of a white noise process	324
7.4	Time series plot of a random walk	
	versus a random walk with drift	324
7.5	Time series plot of a deterministic	
	trend process	325
7.6	Autoregressive processes with differing	
	values of ϕ (0, 0.8, 1)	325
8.1	Daily S&P returns for January	
0.11	1990–December 1999	387
8.2	The problem of local optima in	007
0.2	maximum likelihood estimation	397
8.3	News impact curves for S&P500 returns	0,00
0.5	using coefficients implied from GARCH	
	and GJR model estimates	410
8.4	Three approaches to hypothesis testing	410
0.4	under maximum likelihood	418
0 5		418
8.5	Source: Brooks, Henry and Persand	
	(2002). Time-varying hedge ratios	
	derived from symmetric and	
	asymmetric BEKK models for FTSE	
0.4	returns.	440
9.1	Sample time series plot illustrating a	
	regime shift	452
9.2	Use of intercept dummy variables for	. – –
	quarterly data	456
9.3	Use of slope dummy variables	459
9.4	Piecewise linear model with	
	threshold <i>x</i> *	463
9.5	Source: Brooks and Persand (2001b).	
	Unconditional distribution of	
	US GEYR together with a normal	
	distribution with the same mean and	
	variance	470
9.6	Source: Brooks and Persand (2001b).	
	Value of GEYR and probability that	
	it is in the High GEYR regime for the	
	UK	471
11.1	The fatal flaw of the linear probability	
	model	513
11.2	The logit model	515
11.3	Modelling charitable donations as a	
	function of income	534
11.4	Fitted values from the failure probit	
	regression	542

Tables

1.1	Econometric software packages for	
	modelling financial data	page 12
2.1	Sample data on fund XXX to motivate	
	OLS estimation	34
2.2	Critical values from the standard	
	normal versus <i>t</i> -distribution	55
2.3	Classifying hypothesis testing errors	
	and correct conclusions	64
2.4	Summary statistics for the estimated	
	regression results for (2.52)	67
2.5	Summary statistics for unit trust	
	returns, January 1979–May 2000	69
2.6	CAPM regression results for unit trust	
	returns, January 1979–May 2000	70
2.7	Is there an overreaction effect in the	
	UK stock market?	73
2.8	Part of the EViews regression output	
	revisited	75
3.1	Hedonic model of rental values in	
	Quebec City, 1990. Dependent variable	:
	Canadian dollars per month	114
3A.1	Principal component ordered	
	eigenvalues for Dutch interest rates,	
	1962–1970	123
3A.2	Factor loadings of the first and second	
	principal components for Dutch	
	interest rates, 1962–1970	123
4.1	Constructing a series of lagged values	
	and first differences	140
4.2	Determinants and impacts of sovereign	ı
	credit ratings	197
4.3	Do ratings add to public information?	199
4.4	What determines reactions to ratings	
	announcements?	201

5.1	Uncovered interest parity test results	241
5.2	Forecast error aggregation	252
6.1	Call bid-ask spread and trading volume	202
0.1	regression	283
6.2	Put bid-ask spread and trading volume	200
0.2	regression	283
6.3	Granger causality tests and implied	205
0.5	restrictions on VAR models	297
6.4	Marginal significance levels associated	237
0.4	with joint F-tests	305
6.5	Variance decompositions for the	305
0.5	-	306
7.1	property sector index residuals Critical values for DF tests (Fuller, 1976,	300
7.1		220
70	p. 373) DE tosto en los priese en direturno for	328
7.2	DF tests on log-prices and returns for	244
= 0	high frequency FTSE data	344
7.3	Estimated potentially cointegrating	
	equation and test for cointegration for	o (-
	high frequency FTSE data	345
7.4	Estimated error correction model for	
	high frequency FTSE data	346
7.5	Comparison of out-of-sample	
	forecasting accuracy	346
7.6	Trading profitability of the error	
	correction model with cost of carry	348
7.7	Cointegration tests of PPP with	
	European data	356
7.8	DF tests for international bond indices	357
7.9	Cointegration tests for pairs of	
	international bond indices	358
7.10	Johansen tests for cointegration	
	between international bond yields	359
7.11	Variance decompositions for VAR of	
	international bond yields	360

7.12	Impulse responses for VAR of	
	international bond yields	361
7.13	Tests of the expectations hypothesis	
	using the US zero coupon yield curve	
	with monthly data	364
8.1	GARCH versus implied volatility	423
8.2	EGARCH versus implied volatility	423
8.3	Out-of-sample predictive power for	
	weekly volatility forecasts	426
8.4	Comparisons of the relative	
	information content of out-of-sample	
	volatility forecasts	426
8.5	Hedging effectiveness: summary	
	statistics for portfolio returns	439
9.1	Values and significances of days of the	
	week coefficients	458
9.2	Day-of-the-week effects with the	
	inclusion of interactive dummy	
	variables with the risk proxy	461
9.3	Estimates of the Markov switching	
	model for real exchange rates	468
9.4	Estimated parameters for the Markov	
	switching models	470
9.5	SETAR model for FRF-DEM	478
9.6	FRF-DEM forecast accuracies	479
9.7	Linear AR(3) model for the basis	482
9.8	A two-threshold SETAR model for the	
	basis	483
10.1	Tests of banking market equilibrium	
	with fixed effects panel models	496

10.2	Tests of competition in banking with	
	fixed effects panel models	497
10.3	Results of random effects panel	
	regression for credit stability of Central	
	and East European banks	503
11.1	Logit estimation of the probability of	
	external financing	517
11.2	Multinomial logit estimation of the	
	type of external financing	527
11.3	Ordered probit model results for the	
	determinants of credit ratings	531
11.4	Two-step ordered probit model	
	allowing for selectivity bias in the	
	determinants of credit ratings	532
11.5	Marginal effects for logit and	
	probit models for probability of MSc	
	failure	543
12.1	EGARCH estimates for currency futures	
	returns	574
12.2	Autoregressive volatility estimates for	
	currency futures returns	575
12.3	Minimum capital risk requirements for	
	currency futures as a percentage of the	
	initial value of the position	578
13.1	Journals in finance and	
	econometrics	589
13.2	Useful internet sites for financial	
	literature	592
13.3	Suggested structure for a typical	
	dissertation or project	594

Boxes

1.1	The value of econometrics	page 2
1.2	Time series data	4
1.3	Log returns	8
1.4	Points to consider when reading a	
	published paper	11
1.5	Features of EViews	21
2.1	Names for y and xs in regression	
	models	28
2.2	Reasons for the inclusion of the	
	disturbance term	30
2.3	Assumptions concerning disturbance	
	terms and their interpretation	44
2.4	Standard error estimators	48
2.5	Conducting a test of significance	56
2.6	Carrying out a hypothesis test using	
	confidence intervals	60
2.7	The test of significance and confidence	
	interval approaches compared	61
2.8	Type I and type II errors	64
2.9	Reasons for stock market overreactions	71
2.10	Ranking stocks and forming portfolios	72
2.11	Portfolio monitoring	72
3.1	The relationship between the	
	regression F -statistic and R^2	111
3.2	Selecting between models	117
4.1	Conducting White's test	134
4.2	'Solutions' for heteroscedasticity	138
4.3	Conditions for DW to be a valid	
	test	148
4.4	Conducting a Breusch–Godfrey test	149
4.5	The Cochrane–Orcutt procedure	151

4.6	Observations for the dummy variable	165
4.7	Conducting a Chow test	180
5.1	The stationarity condition for an $AR(p)$	
	model	216
5.2	The invertibility condition for an MA(2)	
	model	224
5.3	Naive forecasting methods	247
6.1	Determining whether an equation is	
	identified	270
6.2	Conducting a Hausman test for	
	exogeneity	274
6.3	Forecasting with VARs	299
7.1	Stationarity tests	331
7.2	Multiple cointegrating relationships	340
8.1	Testing for 'ARCH effects'	390
8.2	Estimating an ARCH or GARCH model	395
8.3	Using maximum likelihood estimation	
	in practice	398
9.1	How do dummy variables work?	456
10.1	Fixed or random effects?	500
11.1	Parameter interpretation for probit and	
	logit models	519
11.2	The differences between censored and	
	truncated dependent variables	535
12.1	Conducting a Monte Carlo simulation	548
12.2	Re-sampling the data	555
12.3	Re-sampling from the residuals	556
12.4	Setting up a Monte Carlo simulation	560
12.5	Simulating the price of an Asian option	565
12.6	Generating draws from a GARCH	
	process	566

Screenshots

1.1	Creating a workfile	page 15
1.2	Importing Excel data into the workfile	16
1.3	The workfile containing loaded data	17
1.4	Summary statistics for a series	19
1.5	A line graph	20
2.1	Summary statistics for spot and future	es 41
2.2	Equation estimation window	42
2.3	Estimation results	43
2.4	Plot of two series	79
3.1	Stepwise procedure equation	
	estimation window	103
3.2	Conducting PCA in EViews	126
4.1	Regression options window	139
4.2	Non-normality test results	164
4.3	Regression residuals, actual values and	1
	fitted series	168
4.4	Chow test for parameter stability	188
4.5	Plotting recursive coefficient estimates	s 190
4.6	CUSUM test graph	191
5.1	Estimating the correlogram	235
5.2	Plot and summary statistics for the	
	dynamic forecasts for the percentage	
	changes in house prices using an	
	AR(2)	257
5.3	Plot and summary statistics for the	
	static forecasts for the percentage	
	changes in house prices using an	
	AR(2)	258

5.4	Estimating exponential smoothing	
	models	259
6.1	Estimating the inflation equation	288
6.2	Estimating the rsandp equation	289
6.3	VAR inputs screen	310
6.4	Constructing the VAR impulse	
	responses	313
6.5	Combined impulse response graphs	314
6.6	Variance decomposition graphs	315
7.1	Options menu for unit root tests	332
7.2	Actual, Fitted and Residual plot to	
	check for stationarity	366
7.3	Johansen cointegration test	368
7.4	VAR specification for Johansen tests	374
8.1	Estimating a GARCH-type model	400
8.2	GARCH model estimation options	401
8.3	Forecasting from GARCH models	415
8.4	Dynamic forecasts of the conditional	
	variance	415
8.5	Static forecasts of the conditional	
	variance	416
8.6	Making a system	441
10.1	Workfile structure window	505
11.1	'Equation Estimation' window for	
	limited dependent variables	539
11.2	'Equation Estimation' options for	
	limited dependent variables	541
12.1	Running an EViews program	561